
Governance on Unit Testing

Goal:
• To be confident of quality of code in production

Objectives:
• raise the standard of confident coding by enforcing x% of code coverage on

o Pull Requests

o Overall project

• discover and repackage tooling/toolchain for code quality

o selected stages of testing

▪ unit testing

▪ integration testing

o API

o SDKs

o Storage (Redis, ES, PG) and ORMs (EF, Dapper)

o Kafka Consumers

o Generic host services (console, background jobs)

o Service classes

o Actors

• Introduce a way to present wording as task on DevOps

o e.g. Write unit test to cover "RegisterMomo" action method in WalletsController

• document governance around writing unit tests

Tools/Framework:
• Testing Framework:

o XUnit (https://xunit.net/)

• Assertions:

o FluentAssertions (https://fluentassertions.com/)

• Mocking:

o Moq (https://github.com/moq/moq4)

• Data generators:

o Bogus (https://github.com/bchavez/Bogus)

Common sense of knowing whether to write tests:
- Any handwritten code should be testable

Recommended Readings:
- https://docs.microsoft.com/en-us/dotnet/core/testing/

- https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

https://xunit.net/
https://fluentassertions.com/
https://github.com/moq/moq4
https://github.com/bchavez/Bogus
https://docs.microsoft.com/en-us/dotnet/core/testing/
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

Principles

Naming convention

- Test Project name

o Must end with “.Tests” after the original project name

▪ .e.g Hubtel.ReceiveMoney.Mtn.Api.Tests

- Test class names should end with “Tests” e.g. WalletsControllerTests or

CustomerServiceTests

- Test methods should begin with method name being tested and meaningful test description

in Pascal-SnakeCase e.g.

o Format: [MethodName]_Should_[Action]_When_[Condition(s)]

▪ e.g. VerifyAndConfirmRegistration_Should_Register_Account_When_GhanaCardId_Is_Valid

▪ e.g.

TopupDevice_Should_Respond_With_HttpStatusCode_NotFound_When_MeterId_Is_Not_St

ored_In_Db

▪

Areas of Testing:
APIs:

1. What do I test?

a. Controller actions

i. One unit test class per controller (if actions methods are not too many)

ii. Create #region for each action method and write the test methods/cases

iii. Use InlineData for highly predictable, simple action methods

b. Service classes

i. One unit test class per service class (if public methods are not too many)

ii. Create #region for each action method and write the test methods/cases

iii. Use InlineData for highly predictable, simple action methods

2. How do I decide on which test to write?

a. Proposed strategies:

i. Write a single test to accommodate different input parameters with

expectations OR

ii. Break down target method’s branching into individual test methods

3. How do I name my tests?

a. Refer to naming convention

Writing the tests:

- Each test class/method should have the SUT (system under test) object

- Prepare “props” for the SUT using IClassFixture

o All mocks, fake data, DI entities

- Use the AAA pattern for writing all test method(s)

Actors:

1. What do I test?

a. Actors themselves

i. For a better, wiser [testing] experience, abstract actor logic into a service

class

b. Service classes

Tips for writing effective tests:
- Always respect the business value first.

o Should the code drive the test or the test drive the code?

- Stick to Repository Pattern as much as possible

o Avoid direct calls to ORM methods

- Ensure service classes do not depend on Nuget package classes as return types (unless they

can be easily mocked)

-

	Governance on Unit Testing
	Goal:
	Objectives:
	Tools/Framework:
	Common sense of knowing whether to write tests:
	Recommended Readings:
	Principles
	Areas of Testing:
	Tips for writing effective tests:

